

Superconducting Materials for the Next Generation Colliders

VLHC Magnet Technologies Workshop
May 24-26, 2000
Ron Scanlan
for the Conductor Development Group

Better materials & simpler coil geometry reduce conductor use

The goal of the National Conductor Program is superior A15 conductor in industrial quantities @ lower \$/kg

Superconductor for HEP Magnets

I. New HEP	Conductor	Develo	pment I	Program
------------	-----------	--------	---------	---------

- ☐ Goals and Organization
- □ Work in Progress FY00(including Nb₃Al, supported by other funding)
- □ Plans for FY 01 and beyond

II. Base Program Materials Support

- □ Wire Procurement
- ☐ Cable Design and Fabrication
- ☐ Wire and Cable Testing

Conductor Development Program Organization

Lab and University Support for FY00 is coming from base program funds

- **BNL--Heat treatment**
- FNAL--Heat treatment, Ic tests
- LBNL--Heat treatment, characterization, cable development
- **OSU--** Magnetization measurements
- ***** TAMU--Heat treatment
- WU. Wisc--Heat treatment, characterization, Ic tests

Total funding for FY00=\$500K; IGC+OST contracts

= \$422K; LDRD=\$10K

LBNL Program Management (\$68K) is included in new Conductor Development Program funding

Conductor Development Program Goals

Provide a cost-effective, high-performance superconductor of qualities not yet achieved for the high-field magnets required for the next generation high-energy physics colliders

* Target specifications for the HEP conductor include:

Jc (noncopper,12T,4.2 K): 3000 A/ mm²

Effective filament size: 40 microns or less

Piece length: Greater than 10,000 m in

wire diam. of 0.3-1.0 mm

Wire cost: Less than \$1.50/ kA-m (12 T,

4.2 K)

Improvements in Jc for Nb₃Sn

Jc vs time Nb3Sn

Technical argument for $Jc = 3000 \text{ A/mm}^2$

- Best (bulk samples) Nb₃Sn Layer Jc = 5500 A/ mm², 12T, 4.2 K
- Subdivide "non-copper" real estate as follows: 37% area fraction Nb, required to get 3000 A/mm² overall; 33% Cu matrix; 5% diffusion barrier; remaining 25% for Sn
- If this composite can be fabricated successfully, we should achieve a Jc (non-copper) = 3000 A/ mm²
- This achievement will provide for cost-effective dipole magnets operating at fields up to 15 T

Oxford Superconducting Technology Goals

- Develop the Hot Extruded Rod (HER) process as a new, cost-effective alternative to their MJR process
- Determine Jc vs filament size relationship for HER process
- Optimize composition to give maximum Jc

HER process billet after extrusion, before salt is removed from cores

Intermagnetics General Program Goals

- Optimize composition to maximize Jc in internal tin conductor
- Determine optimum split configuration to optimize Jc/ filament size
- Optimize billet design to maximize wire lengths

3-split subelements in 61 stack after reaction (splits are now void regions)

STATUS OF HIGH TEMPERATURE RAPID QUENCH Nb₃Al PROGRAM

The Ohio State University

E.W. Collings, M.D. Sumption, F. Buta

EURUS

M. Tomsic

Collaborators

IGC Advanced Superconductors: E. Gregory

Supercon: T. Wong and M. Rudziak

The National High Field Magnet Laboratory: Y. Hascicek

The National Research Institute for Metals: A. Kikuchi, K. Inoue, Y. Iijima

The Tsukuba Magnet Lab: H. Wada, T. Takeuchi

The University of Wisconsin: B. Starch

FY 01 and beyond

- Continue programs at IGC and OST
- New Conductor Initiatives
 - -- Powder in tube RFP (anticipate 3-4 responses)
 - --Nb₃Al Precursor Fabrication RFP (anticipate 3-4 responses)
 - --Special processing facilities
- Additional support for heat treatment, characterization, and Ic testing work
- Scale-up key manufacturing steps to establish large scale processing costs
- Develop realistic cost data to include in VLHC design studies

New Materials Program--Summary

- New Materials Program is underway, with broad community support and participation
- Two contracts are in place (IGC and OST)
- Nb₃Sn manufacturers are using this as an opportunity to rebuild their development teams
- I am optimistic that we can meet the performance and cost goals for Nb₃Sn

Strand procurement status

- Situation is much improved from May 1999.
- Solution OST has delivered wire with Jc=2250 A/mm², with acceptable piece lengths:
 - --100 kg to LBNL in July 1999(=600mcable=RD-3)
 - --50 kg to FNAL in Dec 1999
 - --40 kg in final stages of processing for LBNL
- SMI has delivered strand with Jc = 2250 A/ mm2, with acceptable piece lengths to FNAL in Feb 2000
- IGC has been able to improve piece lengths and to reproduce earlier high Jc results (1950 A/ mm² at 12 T). Production for LBNL, FNAL, and TAMU has resumed.

Our cable design/fabrication work proceeds along two paths

- Empirical--design algorithms have been developed for mandrel, wire tension, narrow edge and overall compaction, etc. [H.Higley and H.vanOort]
 --New algorithm developed for Nb₃Sn to reduce Ic
 - --New algorithm developed for Nb₃Sn to reduce Ic degradation
- Analytical--FEM modeling with details of cable, strand, and filament arrays. Begun with H.vanOort's thesis; continuing with new student

Cable verification testing

- Ic as a function of transverse strain at NHMFL-determines cabling degradation and strain dependence of Ic
- Extracted strand tests at LBNL and Twente U.-determines cabling degradation of Ic
- Ic vs field at BNL-- determines cabling degradation of Ic

New cable testing plans for NHMFL--subsize cables

Ic vs transverse stress for Bi-2212 strand cable

- Successful test at NHMFL facility in Nov 1999
- Note: 18 strand cable, 1 kA current range
- High current Nb₃Sn samples could not be tested during this run due to magnet quenching and current limits
- New Nb₃Sn subsize cables have been prepared to allow testing with degraded magnet at NHMFL

LBNL Cable Program Collaborations

- Ohio State U--Contact Resistance and AC loss studies in NbTi, Nb₃Sn, Nb₃Al, and Bi-2212 strand cables
 - -- 16 joint publications in the past 5 years
 - --cored cables developed by this collaboration have been adopted for use in Twente, Saclay, and FNAL programs
- * TAMU--design and fabrication of NbTi and Nb₃Sn cables for block magnet coils
- BNL--new collaboration--Nb₃Sn cables for react/ wind studies. Bi-2212 cables for react/ wind common coils.

Cable collaborations (cont)

- FNAL--design and development of NbTi and Nb₃Sn cables
 - --wide cables for quadrupole magnets (US LHC collaboration)
 - -- design and fabrication of Nb₃Sn cables for Cos theta dipoles (three long cables, 32 short samples)
 - --design and fabrication of Nb₃Sn cables for react/ wind common coil (two long cables, 6 short samples)

FNAL R&W R3I-00741a Mfg. LBNL 2/17/00

Base Program Support--Summary

- Conductor delivery/ performance situation for model coil programs has improved
- We are beginning to build an inventory of high performance conductors for use in model coils
- RT-1 test is in-coil verification of Nb₃Sn cable performance
- New conductors are being developed for magnets beyond present generation models that are under construction at BNL, FNAL, LBNL, and TAMU (Mixed strand cables; HTS cables)